3.24.66 \(\int \frac {(1-2 x)^{3/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx\) [2366]

3.24.66.1 Optimal result
3.24.66.2 Mathematica [A] (verified)
3.24.66.3 Rubi [A] (verified)
3.24.66.4 Maple [A] (verified)
3.24.66.5 Fricas [A] (verification not implemented)
3.24.66.6 Sympy [F]
3.24.66.7 Maxima [A] (verification not implemented)
3.24.66.8 Giac [B] (verification not implemented)
3.24.66.9 Mupad [F(-1)]

3.24.66.1 Optimal result

Integrand size = 26, antiderivative size = 93 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\frac {7 \sqrt {1-2 x} \sqrt {3+5 x}}{3 (2+3 x)}+\frac {4}{9} \sqrt {\frac {2}{5}} \arcsin \left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )-\frac {29}{9} \sqrt {7} \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right ) \]

output
4/45*arcsin(1/11*22^(1/2)*(3+5*x)^(1/2))*10^(1/2)-29/9*arctan(1/7*(1-2*x)^ 
(1/2)*7^(1/2)/(3+5*x)^(1/2))*7^(1/2)+7/3*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3* 
x)
 
3.24.66.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.02 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\frac {7 \sqrt {1-2 x} \sqrt {3+5 x}}{6+9 x}-\frac {4}{9} \sqrt {\frac {2}{5}} \arctan \left (\frac {\sqrt {\frac {5}{2}-5 x}}{\sqrt {3+5 x}}\right )-\frac {29}{9} \sqrt {7} \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right ) \]

input
Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)^2*Sqrt[3 + 5*x]),x]
 
output
(7*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(6 + 9*x) - (4*Sqrt[2/5]*ArcTan[Sqrt[5/2 - 
 5*x]/Sqrt[3 + 5*x]])/9 - (29*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 
 + 5*x])])/9
 
3.24.66.3 Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.05, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {109, 27, 175, 64, 104, 217, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(1-2 x)^{3/2}}{(3 x+2)^2 \sqrt {5 x+3}} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {1}{3} \int \frac {8 x+73}{2 \sqrt {1-2 x} (3 x+2) \sqrt {5 x+3}}dx+\frac {7 \sqrt {1-2 x} \sqrt {5 x+3}}{3 (3 x+2)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{6} \int \frac {8 x+73}{\sqrt {1-2 x} (3 x+2) \sqrt {5 x+3}}dx+\frac {7 \sqrt {1-2 x} \sqrt {5 x+3}}{3 (3 x+2)}\)

\(\Big \downarrow \) 175

\(\displaystyle \frac {1}{6} \left (\frac {8}{3} \int \frac {1}{\sqrt {1-2 x} \sqrt {5 x+3}}dx+\frac {203}{3} \int \frac {1}{\sqrt {1-2 x} (3 x+2) \sqrt {5 x+3}}dx\right )+\frac {7 \sqrt {1-2 x} \sqrt {5 x+3}}{3 (3 x+2)}\)

\(\Big \downarrow \) 64

\(\displaystyle \frac {1}{6} \left (\frac {203}{3} \int \frac {1}{\sqrt {1-2 x} (3 x+2) \sqrt {5 x+3}}dx+\frac {16}{15} \int \frac {1}{\sqrt {\frac {11}{5}-\frac {2}{5} (5 x+3)}}d\sqrt {5 x+3}\right )+\frac {7 \sqrt {1-2 x} \sqrt {5 x+3}}{3 (3 x+2)}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {1}{6} \left (\frac {406}{3} \int \frac {1}{-\frac {1-2 x}{5 x+3}-7}d\frac {\sqrt {1-2 x}}{\sqrt {5 x+3}}+\frac {16}{15} \int \frac {1}{\sqrt {\frac {11}{5}-\frac {2}{5} (5 x+3)}}d\sqrt {5 x+3}\right )+\frac {7 \sqrt {1-2 x} \sqrt {5 x+3}}{3 (3 x+2)}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{6} \left (\frac {16}{15} \int \frac {1}{\sqrt {\frac {11}{5}-\frac {2}{5} (5 x+3)}}d\sqrt {5 x+3}-\frac {58}{3} \sqrt {7} \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )\right )+\frac {7 \sqrt {1-2 x} \sqrt {5 x+3}}{3 (3 x+2)}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {1}{6} \left (\frac {8}{3} \sqrt {\frac {2}{5}} \arcsin \left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )-\frac {58}{3} \sqrt {7} \arctan \left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )\right )+\frac {7 \sqrt {1-2 x} \sqrt {5 x+3}}{3 (3 x+2)}\)

input
Int[(1 - 2*x)^(3/2)/((2 + 3*x)^2*Sqrt[3 + 5*x]),x]
 
output
(7*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(3*(2 + 3*x)) + ((8*Sqrt[2/5]*ArcSin[Sqrt[ 
2/11]*Sqrt[3 + 5*x]])/3 - (58*Sqrt[7]*ArcTan[Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 
 + 5*x])])/3)/6
 

3.24.66.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 64
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp 
[2/b   Subst[Int[1/Sqrt[c - a*(d/b) + d*(x^2/b)], x], x, Sqrt[a + b*x]], x] 
 /; FreeQ[{a, b, c, d}, x] && GtQ[c - a*(d/b), 0] && ( !GtQ[a - c*(b/d), 0] 
 || PosQ[b])
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 175
Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_ 
)))/((a_.) + (b_.)*(x_)), x_] :> Simp[h/b   Int[(c + d*x)^n*(e + f*x)^p, x] 
, x] + Simp[(b*g - a*h)/b   Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)), x], x] 
 /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 
3.24.66.4 Maple [A] (verified)

Time = 1.14 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.37

method result size
risch \(-\frac {7 \left (-1+2 x \right ) \sqrt {3+5 x}\, \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{3 \left (2+3 x \right ) \sqrt {-\left (-1+2 x \right ) \left (3+5 x \right )}\, \sqrt {1-2 x}}+\frac {\left (\frac {2 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right )}{45}+\frac {29 \sqrt {7}\, \arctan \left (\frac {9 \left (\frac {20}{3}+\frac {37 x}{3}\right ) \sqrt {7}}{14 \sqrt {-90 \left (\frac {2}{3}+x \right )^{2}+67+111 x}}\right )}{18}\right ) \sqrt {\left (1-2 x \right ) \left (3+5 x \right )}}{\sqrt {1-2 x}\, \sqrt {3+5 x}}\) \(127\)
default \(\frac {\sqrt {1-2 x}\, \sqrt {3+5 x}\, \left (12 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right ) x +435 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x +8 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right )+290 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+210 \sqrt {-10 x^{2}-x +3}\right )}{90 \sqrt {-10 x^{2}-x +3}\, \left (2+3 x \right )}\) \(131\)

input
int((1-2*x)^(3/2)/(2+3*x)^2/(3+5*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-7/3*(-1+2*x)/(2+3*x)*(3+5*x)^(1/2)/(-(-1+2*x)*(3+5*x))^(1/2)*((1-2*x)*(3+ 
5*x))^(1/2)/(1-2*x)^(1/2)+(2/45*10^(1/2)*arcsin(20/11*x+1/11)+29/18*7^(1/2 
)*arctan(9/14*(20/3+37/3*x)*7^(1/2)/(-90*(2/3+x)^2+67+111*x)^(1/2)))*((1-2 
*x)*(3+5*x))^(1/2)/(1-2*x)^(1/2)/(3+5*x)^(1/2)
 
3.24.66.5 Fricas [A] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.31 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=-\frac {4 \, \sqrt {5} \sqrt {2} {\left (3 \, x + 2\right )} \arctan \left (\frac {\sqrt {5} \sqrt {2} {\left (20 \, x + 1\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{20 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) + 145 \, \sqrt {7} {\left (3 \, x + 2\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 210 \, \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{90 \, {\left (3 \, x + 2\right )}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^2/(3+5*x)^(1/2),x, algorithm="fricas")
 
output
-1/90*(4*sqrt(5)*sqrt(2)*(3*x + 2)*arctan(1/20*sqrt(5)*sqrt(2)*(20*x + 1)* 
sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)) + 145*sqrt(7)*(3*x + 2)*arc 
tan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3) 
) - 210*sqrt(5*x + 3)*sqrt(-2*x + 1))/(3*x + 2)
 
3.24.66.6 Sympy [F]

\[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\int \frac {\left (1 - 2 x\right )^{\frac {3}{2}}}{\left (3 x + 2\right )^{2} \sqrt {5 x + 3}}\, dx \]

input
integrate((1-2*x)**(3/2)/(2+3*x)**2/(3+5*x)**(1/2),x)
 
output
Integral((1 - 2*x)**(3/2)/((3*x + 2)**2*sqrt(5*x + 3)), x)
 
3.24.66.7 Maxima [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.66 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\frac {2}{45} \, \sqrt {10} \arcsin \left (\frac {20}{11} \, x + \frac {1}{11}\right ) + \frac {29}{18} \, \sqrt {7} \arcsin \left (\frac {37 \, x}{11 \, {\left | 3 \, x + 2 \right |}} + \frac {20}{11 \, {\left | 3 \, x + 2 \right |}}\right ) + \frac {7 \, \sqrt {-10 \, x^{2} - x + 3}}{3 \, {\left (3 \, x + 2\right )}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^2/(3+5*x)^(1/2),x, algorithm="maxima")
 
output
2/45*sqrt(10)*arcsin(20/11*x + 1/11) + 29/18*sqrt(7)*arcsin(37/11*x/abs(3* 
x + 2) + 20/11/abs(3*x + 2)) + 7/3*sqrt(-10*x^2 - x + 3)/(3*x + 2)
 
3.24.66.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 260 vs. \(2 (67) = 134\).

Time = 0.45 (sec) , antiderivative size = 260, normalized size of antiderivative = 2.80 \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\frac {29}{180} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} + \frac {2}{45} \, \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{4 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} + \frac {154 \, \sqrt {10} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}}{3 \, {\left ({\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280\right )}} \]

input
integrate((1-2*x)^(3/2)/(2+3*x)^2/(3+5*x)^(1/2),x, algorithm="giac")
 
output
29/180*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sq 
rt(2)*sqrt(-10*x + 5) - sqrt(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5 
) - sqrt(22)))) + 2/45*sqrt(10)*(pi + 2*arctan(-1/4*sqrt(5*x + 3)*((sqrt(2 
)*sqrt(-10*x + 5) - sqrt(22))^2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - 
sqrt(22)))) + 154/3*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5* 
x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))/(((sqrt(2)* 
sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt( 
-10*x + 5) - sqrt(22)))^2 + 280)
 
3.24.66.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(1-2 x)^{3/2}}{(2+3 x)^2 \sqrt {3+5 x}} \, dx=\int \frac {{\left (1-2\,x\right )}^{3/2}}{{\left (3\,x+2\right )}^2\,\sqrt {5\,x+3}} \,d x \]

input
int((1 - 2*x)^(3/2)/((3*x + 2)^2*(5*x + 3)^(1/2)),x)
 
output
int((1 - 2*x)^(3/2)/((3*x + 2)^2*(5*x + 3)^(1/2)), x)